Wooldridge Source: Statistical Abstract of the United States, 1990 and 1994. (For example, the infant mortality rates come from Table 113 in 1990 and Table 123 in 1994.) Data loads lazily.

data('infmrt')

Format

A data.frame with 102 observations on 12 variables:

  • year: 1987 or 1990

  • infmort: deaths per 1,000 live births

  • afdcprt: afdc partic., 1000s

  • popul: population, 1000s

  • pcinc: per capita income

  • physic: drs. per 100,000 civilian pop.

  • afdcper: percent on AFDC

  • d90: =1 if year == 1990

  • lpcinc: log(pcinc)

  • lphysic: log(physic)

  • DC: =1 for Washington DC

  • lpopul: log(popul)

Notes

An interesting exercise is to add the percentage of the population on AFDC (afdcper) to the infant mortality equation. Pooled OLS and first differencing can give very different estimates. Adding the years 1998 and 2002 and applying fixed effects seems natural. Intervening years can be added, too, although variation in the key variables from year to year might be minimal.

Used in Text: pages 330-331, 339

Examples

 str(infmrt)
#> 'data.frame':	102 obs. of  12 variables:
#>  $ year   : int  1987 1990 1987 1990 1987 1990 1987 1990 1987 1990 ...
#>  $ infmort: num  8.3 6.2 7.8 7.1 8.5 ...
#>  $ afdcprt: int  52 62 11 21 20 25 234 282 42 52 ...
#>  $ popul  : int  1186 1228 1056 1109 547 563 5856 6016 986 1003 ...
#>  $ pcinc  : int  13996 17125 18083 21051 14267 17630 19131 22558 15683 18771 ...
#>  $ physic : int  173 178 186 200 244 253 322 337 244 254 ...
#>  $ afdcper: num  4.38 5.05 1.04 1.89 3.66 ...
#>  $ d90    : int  0 1 0 1 0 1 0 1 0 1 ...
#>  $ lpcinc : num  9.55 9.75 9.8 9.95 9.57 ...
#>  $ lphysic: num  5.15 5.18 5.23 5.3 5.5 ...
#>  $ DC     : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ lpopul : num  7.08 7.11 6.96 7.01 6.3 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"