Wooldridge Source: Economic Report of the President, 1989, Table B-47. The data are for the non-farm business sector. Data loads lazily.

data('earns')

Format

A data.frame with 41 observations on 14 variables:

  • year: 1947 to 1987

  • wkearns: avg. real weekly earnings

  • wkhours: avg. weekly hours

  • outphr: output per labor hour

  • hrwage: wkearns/wkhours

  • lhrwage: log(hrwage)

  • loutphr: log(outphr)

  • t: time trend: t=1 to 47

  • ghrwage: lhrwage - lhrwage[_n-1]

  • goutphr: loutphr - loutphr[_n-1]

  • ghrwge_1: ghrwage[_n-1]

  • goutph_1: goutphr[_n-1]

  • goutph_2: goutphr[_n-2]

  • lwkhours: log(wkhours)

Notes

These data could be usefully updated, but changes in reporting conventions in more recent ERPs may make that difficult.

Used in Text: pages 363-364, 398, 407

Examples

 str(earns)
#> 'data.frame':	41 obs. of  14 variables:
#>  $ year    : int  1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
#>  $ wkearns : num  124 123 128 134 135 ...
#>  $ wkhours : num  40.3 40 39.4 39.8 39.9 ...
#>  $ outphr  : num  51.4 53.3 54.2 57.7 59.4 ...
#>  $ hrwage  : num  3.07 3.09 3.24 3.36 3.38 ...
#>  $ lhrwage : num  1.12 1.13 1.18 1.21 1.22 ...
#>  $ loutphr : num  3.94 3.98 3.99 4.06 4.08 ...
#>  $ t       : int  1 2 3 4 5 6 7 8 9 10 ...
#>  $ ghrwage : num  NA 0.00674 0.05022 0.03569 0.00523 ...
#>  $ goutphr : num  NA 0.0363 0.0167 0.0626 0.029 ...
#>  $ ghrwge_1: num  NA NA 0.00674 0.05022 0.03569 ...
#>  $ goutph_1: num  NA NA 0.0363 0.0167 0.0626 ...
#>  $ goutph_2: num  NA NA NA 0.0363 0.0167 ...
#>  $ lwkhours: num  3.7 3.69 3.67 3.68 3.69 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"