Wooldridge Source: From C. Cornwell and W. Trumball (1994), “Estimating the Economic Model of Crime with Panel Data,” Review of Economics and Statistics 76, 360-366. Professor Cornwell kindly provided the data. Data loads lazily.

data('crime4')

Format

A data.frame with 630 observations on 59 variables:

  • county: county identifier

  • year: 81 to 87

  • crmrte: crimes committed per person

  • prbarr: 'probability' of arrest

  • prbconv: 'probability' of conviction

  • prbpris: 'probability' of prison sentenc

  • avgsen: avg. sentence, days

  • polpc: police per capita

  • density: people per sq. mile

  • taxpc: tax revenue per capita

  • west: =1 if in western N.C.

  • central: =1 if in central N.C.

  • urban: =1 if in SMSA

  • pctmin80: perc. minority, 1980

  • wcon: weekly wage, construction

  • wtuc: wkly wge, trns, util, commun

  • wtrd: wkly wge, whlesle, retail trade

  • wfir: wkly wge, fin, ins, real est

  • wser: wkly wge, service industry

  • wmfg: wkly wge, manufacturing

  • wfed: wkly wge, fed employees

  • wsta: wkly wge, state employees

  • wloc: wkly wge, local gov emps

  • mix: offense mix: face-to-face/other

  • pctymle: percent young male

  • d82: =1 if year == 82

  • d83: =1 if year == 83

  • d84: =1 if year == 84

  • d85: =1 if year == 85

  • d86: =1 if year == 86

  • d87: =1 if year == 87

  • lcrmrte: log(crmrte)

  • lprbarr: log(prbarr)

  • lprbconv: log(prbconv)

  • lprbpris: log(prbpris)

  • lavgsen: log(avgsen)

  • lpolpc: log(polpc)

  • ldensity: log(density)

  • ltaxpc: log(taxpc)

  • lwcon: log(wcon)

  • lwtuc: log(wtuc)

  • lwtrd: log(wtrd)

  • lwfir: log(wfir)

  • lwser: log(wser)

  • lwmfg: log(wmfg)

  • lwfed: log(wfed)

  • lwsta: log(wsta)

  • lwloc: log(wloc)

  • lmix: log(mix)

  • lpctymle: log(pctymle)

  • lpctmin: log(pctmin)

  • clcrmrte: lcrmrte - lcrmrte[_n-1]

  • clprbarr: lprbarr - lprbarr[_n-1]

  • clprbcon: lprbconv - lprbconv[_n-1]

  • clprbpri: lprbpri - lprbpri[t-1]

  • clavgsen: lavgsen - lavgsen[t-1]

  • clpolpc: lpolpc - lpolpc[t-1]

  • cltaxpc: ltaxpc - ltaxpc[t-1]

  • clmix: lmix - lmix[t-1]

Notes

Computer Exercise C16.7 shows that variables that might seem to be good instrumental variable candidates are not always so good, especially after applying a transformation such as differencing across time. You could have the students do an IV analysis for just, say, 1987.

Used in Text: pages 471-472, 479, 504, 580

Examples

 str(crime4)
#> 'data.frame':	630 obs. of  59 variables:
#>  $ county  : int  1 1 1 1 1 1 1 3 3 3 ...
#>  $ year    : int  81 82 83 84 85 86 87 81 82 83 ...
#>  $ crmrte  : num  0.0399 0.0383 0.0303 0.0347 0.0366 ...
#>  $ prbarr  : num  0.29 0.338 0.33 0.363 0.325 ...
#>  $ prbconv : num  0.402 0.433 0.526 0.605 0.579 ...
#>  $ prbpris : num  0.472 0.507 0.48 0.52 0.497 ...
#>  $ avgsen  : num  5.61 5.59 5.8 6.89 6.55 ...
#>  $ polpc   : num  0.00179 0.00177 0.00184 0.00189 0.00192 ...
#>  $ density : num  2.31 2.33 2.34 2.35 2.36 ...
#>  $ taxpc   : num  25.7 24.9 26.5 26.8 28.1 ...
#>  $ west    : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ central : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ urban   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ pctmin80: num  20.2 20.2 20.2 20.2 20.2 ...
#>  $ wcon    : num  206 213 220 223 244 ...
#>  $ wtuc    : num  334 369 1395 399 359 ...
#>  $ wtrd    : num  182 190 197 201 207 ...
#>  $ wfir    : num  272 301 310 350 383 ...
#>  $ wser    : num  216 232 240 252 261 ...
#>  $ wmfg    : num  229 240 270 282 299 ...
#>  $ wfed    : num  409 420 439 459 490 ...
#>  $ wsta    : num  236 254 250 262 281 ...
#>  $ wloc    : num  231 237 249 264 289 ...
#>  $ mix     : num  0.0999 0.103 0.0807 0.0785 0.0932 ...
#>  $ pctymle : num  0.0877 0.0864 0.0851 0.0838 0.0823 ...
#>  $ d82     : int  0 1 0 0 0 0 0 0 1 0 ...
#>  $ d83     : int  0 0 1 0 0 0 0 0 0 1 ...
#>  $ d84     : int  0 0 0 1 0 0 0 0 0 0 ...
#>  $ d85     : int  0 0 0 0 1 0 0 0 0 0 ...
#>  $ d86     : int  0 0 0 0 0 1 0 0 0 0 ...
#>  $ d87     : int  0 0 0 0 0 0 1 0 0 0 ...
#>  $ lcrmrte : num  -3.22 -3.26 -3.5 -3.36 -3.31 ...
#>  $ lprbarr : num  -1.24 -1.08 -1.11 -1.01 -1.12 ...
#>  $ lprbconv: num  -0.911 -0.837 -0.643 -0.503 -0.547 ...
#>  $ lprbpris: num  -0.75 -0.679 -0.735 -0.654 -0.699 ...
#>  $ lavgsen : num  1.72 1.72 1.76 1.93 1.88 ...
#>  $ lpolpc  : num  -6.33 -6.34 -6.3 -6.27 -6.25 ...
#>  $ ldensity: num  0.836 0.846 0.851 0.853 0.861 ...
#>  $ ltaxpc  : num  3.25 3.21 3.28 3.29 3.34 ...
#>  $ lwcon   : num  5.33 5.36 5.39 5.41 5.5 ...
#>  $ lwtuc   : num  5.81 5.91 7.24 5.99 5.88 ...
#>  $ lwtrd   : num  5.21 5.24 5.28 5.3 5.33 ...
#>  $ lwfir   : num  5.61 5.71 5.74 5.86 5.95 ...
#>  $ lwser   : num  5.37 5.44 5.48 5.53 5.56 ...
#>  $ lwmfg   : num  5.43 5.48 5.6 5.64 5.7 ...
#>  $ lwfed   : num  6.01 6.04 6.08 6.13 6.2 ...
#>  $ lwsta   : num  5.46 5.54 5.52 5.57 5.64 ...
#>  $ lwloc   : num  5.44 5.47 5.52 5.58 5.66 ...
#>  $ lmix    : num  -2.3 -2.27 -2.52 -2.54 -2.37 ...
#>  $ lpctymle: num  -2.43 -2.45 -2.46 -2.48 -2.5 ...
#>  $ lpctmin : num  3.01 3.01 3.01 3.01 3.01 ...
#>  $ clcrmrte: num  NA -0.0394 -0.2353 0.1362 0.0518 ...
#>  $ clprbarr: num  NA 0.1545 -0.0229 0.0926 -0.1081 ...
#>  $ clprbcon: num  NA 0.0741 0.194 0.14 -0.0439 ...
#>  $ clprbpri: num  NA 0.071 -0.0553 0.0809 -0.0453 ...
#>  $ clavgsen: num  NA -0.00357 0.03688 0.17221 -0.05061 ...
#>  $ clpolpc : num  NA -0.0114 0.0384 0.0269 0.0202 ...
#>  $ cltaxpc : num  NA -0.0326 0.0615 0.0147 0.0472 ...
#>  $ clmix   : num  NA 0.0309 -0.2447 -0.0273 0.1721 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"