Wooldridge Source: E. Eide (1994), Economics of Crime: Deterrence of the Rational Offender. Amsterdam: North Holland. The data come from Tables A3 and A6. Data loads lazily.

data('crime3')

Format

A data.frame with 106 observations on 12 variables:

  • district: district number

  • year: 72 or 78

  • crime: crimes per 1000 people

  • clrprc1: clear-up perc, prior year

  • clrprc2: clear-up perc, two-years prior

  • d78: =1 if year = 78

  • avgclr: (clrprc1 + clrprc2)/2

  • lcrime: log(crime)

  • clcrime: change in lcrime

  • cavgclr: change in avgclr

  • cclrprc1: change in clrprc1

  • cclrprc2: change in clrprc2

Notes

These data are for the years 1972 and 1978 for 53 police districts in Norway. Much larger data sets for more years can be obtained for the United States, although a measure of the “clear-up” rate is needed.

Used in Text: pages 464-465, 477-478

Examples

 str(crime3)
#> 'data.frame':	106 obs. of  12 variables:
#>  $ district: int  1 1 2 2 3 3 4 4 5 5 ...
#>  $ year    : int  72 78 72 78 72 78 72 78 72 78 ...
#>  $ crime   : num  49.5 71.3 14.8 17.9 17.4 ...
#>  $ clrprc1 : int  22 15 51 39 33 36 41 41 41 32 ...
#>  $ clrprc2 : int  23 17 62 40 34 37 43 40 46 33 ...
#>  $ d78     : int  0 1 0 1 0 1 0 1 0 1 ...
#>  $ avgclr  : num  22.5 16 56.5 39.5 33.5 36.5 42 40.5 43.5 32.5 ...
#>  $ lcrime  : num  3.9 4.27 2.69 2.88 2.85 ...
#>  $ clcrime : num  NA 0.364 NA 0.189 NA ...
#>  $ cavgclr : num  NA -6.5 NA -17 NA 3 NA -1.5 NA -11 ...
#>  $ cclrprc1: int  NA -7 NA -12 NA 3 NA 0 NA -9 ...
#>  $ cclrprc2: int  NA -6 NA -22 NA 3 NA -3 NA -13 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"