Wooldridge Source: Compiled by J. Monroe Gamble for a Summer Research Opportunities Program (SROP) at Michigan State University, Summer 2014. Monroe obtained data from the U.S. Census Bureau, the FBI Uniform Crime Reports, and the Death Penalty Information Center. Data loads lazily.

data('countymurders')

Format

A data.frame with 37349 observations on 20 variables:

  • arrests: # of murder arrests

  • countyid: county identifier: 1000*statefips + countyfips

  • density: population density; per square mile

  • popul: county population

  • perc1019: percent pop. age 10-19

  • perc2029: percent pop. age 20-29

  • percblack: percent population black

  • percmale: percent population male

  • rpcincmaint: real per capita income maintenance

  • rpcpersinc: real per capita personal income

  • rpcunemins: real per capita unem insurance payments

  • year: 1980-1996

  • murders: # of murders

  • murdrate: murders per 10,000 people

  • arrestrate: murder arrests per 10,000

  • statefips: state FIPS code

  • countyfips: county FIPS code

  • execs: # of executions

  • lpopul: log(popul)

  • execrate: executions per 10,000

Source

http://www.cengage.com/c/introductory-econometrics-a-modern-approach-6e-wooldridge

Used in Text

pages 16, 58, 431, 457

Examples

str(countymurders)
#> 'data.frame': 37349 obs. of 20 variables: #> $ arrests : int 2 3 2 7 3 1 1 2 0 5 ... #> $ countyid : int 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 ... #> $ density : num 54 53.7 53.8 53.8 53.9 ... #> $ popul : int 32216 31984 32036 32056 32128 32248 32888 33264 33632 33992 ... #> $ perc1019 : num 20.6 20.2 19.7 19.1 18.5 ... #> $ perc2029 : num 15.3 15.6 15.7 15.9 15.9 ... #> $ percblack : num 22.3 22.1 21.8 21.5 21.3 ... #> $ percmale : num 40.2 40.4 40.4 40.5 40.5 ... #> $ rpcincmaint: num 168 168 167 177 166 ... #> $ rpcpersinc : num 8781 8233 8328 8546 8965 ... #> $ rpcunemins : num 29.2 43.9 71.4 72.2 40.4 ... #> $ year : int 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 ... #> $ murders : int 2 1 3 7 2 2 4 1 0 3 ... #> $ murdrate : num 0.621 0.313 0.936 2.184 0.623 ... #> $ arrestrate : num 0.621 0.938 0.624 2.184 0.934 ... #> $ statefips : int 1 1 1 1 1 1 1 1 1 1 ... #> $ countyfips : int 1 1 1 1 1 1 1 1 1 1 ... #> $ execs : int 0 0 0 0 0 0 0 0 0 0 ... #> $ lpopul : num 10.4 10.4 10.4 10.4 10.4 ... #> $ execrate : num 0 0 0 0 0 0 0 0 0 0 ...