Wooldridge Source: I collected these data from the 1997 Economic Report of the President. Specifically, the data come from Tables B-71, 15, 29, and 32. Data loads lazily.

data('consump')

Format

A data.frame with 37 observations on 24 variables:

  • year: 1959-1995

  • i3: 3 mo. T-bill rate

  • inf: inflation rate; CPI

  • rdisp: disp. inc., 1992 $, bils.

  • rnondc: nondur. cons., 1992 $, bils.

  • rserv: services, 1992 $, bils.

  • pop: population, 1000s

  • y: per capita real disp. inc.

  • rcons: rnondc + rserv

  • c: per capita real cons.

  • r3: i3 - inf; real ex post int.

  • lc: log(c)

  • ly: log(y)

  • gc: lc - lc[_n-1]

  • gy: ly - ly[_n-1]

  • gc_1: gc[_n-1]

  • gy_1: gy[_n-1]

  • r3_1: r3[_n-1]

  • lc_ly: lc - ly

  • lc_ly_1: lc_ly[_n-1]

  • gc_2: gc[_n-2]

  • gy_2: gy[_n-2]

  • r3_2: r3[_n-2]

  • lc_ly_2: lc_ly[_n-2]

Notes

For a student interested in time series methods, updating this data set and using it in a manner similar to that in the text could be acceptable as a final project.

Used in Text: pages 377-378, 408-409, 442, 570-571, 579, 673

Examples

 str(consump)
#> 'data.frame':	37 obs. of  24 variables:
#>  $ year   : int  1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 ...
#>  $ i3     : num  3.41 2.93 2.38 2.78 3.16 ...
#>  $ inf    : num  0.7 1.7 1 1 1.3 ...
#>  $ rdisp  : num  1530 1565 1616 1694 1756 ...
#>  $ rnondc : num  606 615 627 646 660 ...
#>  $ rserv  : num  687 717 746 783 819 ...
#>  $ pop    : num  177830 180671 183691 186538 189242 ...
#>  $ y      : num  8604 8664 8796 9080 9276 ...
#>  $ rcons  : num  1294 1333 1373 1430 1479 ...
#>  $ c      : num  7275 7377 7476 7665 7814 ...
#>  $ r3     : num  2.71 1.23 1.38 1.78 1.86 ...
#>  $ lc     : num  8.89 8.91 8.92 8.94 8.96 ...
#>  $ ly     : num  9.06 9.07 9.08 9.11 9.14 ...
#>  $ gc     : num  NA 0.0139 0.0133 0.0251 0.0192 ...
#>  $ gy     : num  NA 0.00696 0.01511 0.03171 0.02145 ...
#>  $ gc_1   : num  NA NA 0.0139 0.0133 0.0251 ...
#>  $ gy_1   : num  NA NA 0.00696 0.01511 0.03171 ...
#>  $ r3_1   : num  NA 2.71 1.23 1.38 1.78 ...
#>  $ lc_ly  : num  -0.168 -0.161 -0.163 -0.169 -0.172 ...
#>  $ lc_ly_1: num  NA -0.168 -0.161 -0.163 -0.169 ...
#>  $ gc_2   : num  NA NA NA 0.0139 0.0133 ...
#>  $ gy_2   : num  NA NA NA 0.00696 0.01511 ...
#>  $ r3_2   : num  NA NA 2.71 1.23 1.38 ...
#>  $ lc_ly_2: num  NA NA -0.168 -0.161 -0.163 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"