Wooldridge Source: See CEOSAL1.RAW Data loads lazily.

data('ceosal2')

Format

A data.frame with 177 observations on 15 variables:

  • salary: 1990 compensation, $1000s

  • age: in years

  • college: =1 if attended college

  • grad: =1 if attended graduate school

  • comten: years with company

  • ceoten: years as ceo with company

  • sales: 1990 firm sales, millions

  • profits: 1990 profits, millions

  • mktval: market value, end 1990, mills.

  • lsalary: log(salary)

  • lsales: log(sales)

  • lmktval: log(mktval)

  • comtensq: comten^2

  • ceotensq: ceoten^2

  • profmarg: profits as percent of sales

Source

https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041

Notes

Compared with CEOSAL1.RAW, in this CEO data set more information about the CEO, rather than about the company, is included.

Used in Text: pages 64, 111, 163, 214, 335, 699

Examples

str(ceosal2)
#> 'data.frame': 177 obs. of 15 variables: #> $ salary : int 1161 600 379 651 497 1067 945 1261 503 1094 ... #> $ age : int 49 43 51 55 44 64 59 63 47 64 ... #> $ college : int 1 1 1 1 1 1 1 1 1 1 ... #> $ grad : int 1 1 1 0 1 1 0 1 1 1 ... #> $ comten : int 9 10 9 22 8 7 35 32 4 39 ... #> $ ceoten : int 2 10 3 22 6 7 10 8 4 5 ... #> $ sales : num 6200 283 169 1100 351 19000 536 4800 610 2900 ... #> $ profits : int 966 48 40 -54 28 614 24 191 7 230 ... #> $ mktval : num 23200 1100 1100 1000 387 3900 623 2100 454 3900 ... #> $ lsalary : num 7.06 6.4 5.94 6.48 6.21 ... #> $ lsales : num 8.73 5.65 5.13 7 5.86 ... #> $ lmktval : num 10.05 7 7 6.91 5.96 ... #> $ comtensq: int 81 100 81 484 64 49 1225 1024 16 1521 ... #> $ ceotensq: int 4 100 9 484 36 49 100 64 16 25 ... #> $ profmarg: num 15.58 16.96 23.67 -4.91 7.98 ... #> - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"