Wooldridge Source: See CEOSAL1.RAW Data loads lazily.

data('ceosal2')

Format

A data.frame with 177 observations on 15 variables:

  • salary: 1990 compensation, $1000s

  • age: in years

  • college: =1 if attended college

  • grad: =1 if attended graduate school

  • comten: years with company

  • ceoten: years as ceo with company

  • sales: 1990 firm sales, millions

  • profits: 1990 profits, millions

  • mktval: market value, end 1990, mills.

  • lsalary: log(salary)

  • lsales: log(sales)

  • lmktval: log(mktval)

  • comtensq: comten^2

  • ceotensq: ceoten^2

  • profmarg: profits as percent of sales

Notes

Compared with CEOSAL1.RAW, in this CEO data set more information about the CEO, rather than about the company, is included.

Used in Text: pages 64, 111, 163, 214, 335, 699

Examples

 str(ceosal2)
#> 'data.frame':	177 obs. of  15 variables:
#>  $ salary  : int  1161 600 379 651 497 1067 945 1261 503 1094 ...
#>  $ age     : int  49 43 51 55 44 64 59 63 47 64 ...
#>  $ college : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ grad    : int  1 1 1 0 1 1 0 1 1 1 ...
#>  $ comten  : int  9 10 9 22 8 7 35 32 4 39 ...
#>  $ ceoten  : int  2 10 3 22 6 7 10 8 4 5 ...
#>  $ sales   : num  6200 283 169 1100 351 19000 536 4800 610 2900 ...
#>  $ profits : int  966 48 40 -54 28 614 24 191 7 230 ...
#>  $ mktval  : num  23200 1100 1100 1000 387 3900 623 2100 454 3900 ...
#>  $ lsalary : num  7.06 6.4 5.94 6.48 6.21 ...
#>  $ lsales  : num  8.73 5.65 5.13 7 5.86 ...
#>  $ lmktval : num  10.05 7 7 6.91 5.96 ...
#>  $ comtensq: int  81 100 81 484 64 49 1225 1024 16 1521 ...
#>  $ ceotensq: int  4 100 9 484 36 49 100 64 16 25 ...
#>  $ profmarg: num  15.58 16.96 23.67 -4.91 7.98 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"