Wooldridge Source: D. Card (1995), Using Geographic Variation in College Proximity to Estimate the Return to Schooling, in Aspects of Labour Market Behavior: Essays in Honour of John Vanderkamp. Ed. L.N. Christophides, E.K. Grant, and R. Swidinsky, 201-222. Toronto: University of Toronto Press. Professor Card kindly provided these data. Data loads lazily.

data('card')

Format

A data.frame with 3010 observations on 34 variables:

  • id: person identifier

  • nearc2: =1 if near 2 yr college, 1966

  • nearc4: =1 if near 4 yr college, 1966

  • educ: years of schooling, 1976

  • age: in years

  • fatheduc: father's schooling

  • motheduc: mother's schooling

  • weight: NLS sampling weight, 1976

  • momdad14: =1 if live with mom, dad at 14

  • sinmom14: =1 if with single mom at 14

  • step14: =1 if with step parent at 14

  • reg661: =1 for region 1, 1966

  • reg662: =1 for region 2, 1966

  • reg663: =1 for region 3, 1966

  • reg664: =1 for region 4, 1966

  • reg665: =1 for region 5, 1966

  • reg666: =1 for region 6, 1966

  • reg667: =1 for region 7, 1966

  • reg668: =1 for region 8, 1966

  • reg669: =1 for region 9, 1966

  • south66: =1 if in south in 1966

  • black: =1 if black

  • smsa: =1 in in SMSA, 1976

  • south: =1 if in south, 1976

  • smsa66: =1 if in SMSA, 1966

  • wage: hourly wage in cents, 1976

  • enroll: =1 if enrolled in school, 1976

  • KWW: knowledge world of work score

  • IQ: IQ score

  • married: =1 if married, 1976

  • libcrd14: =1 if lib. card in home at 14

  • exper: age - educ - 6

  • lwage: log(wage)

  • expersq: exper^2

Notes

Computer Exercise C15.3 is important for analyzing these data. There, it is shown that the instrumental variable, `nearc4`, is actually correlated with `IQ`, at least for the subset of men for which an IQ score is reported. However, the correlation between `nearc4“ and `IQ`, once the other explanatory variables are netted out, is arguably zero. At least, it is not statistically different from zero. In other words, `nearc4` fails the exogeneity requirement in a simple regression model but it passes, at least using the crude test described above, if controls are added to the wage equation. For a more advanced course, a nice extension of Card's analysis is to allow the return to education to differ by race. A relatively simple extension is to include black education (blackeduc) as an additional explanatory variable; its natural instrument is blacknearc4.

Used in Text: pages 526-527, 547

Examples

 str(card)
#> 'data.frame':	3010 obs. of  34 variables:
#>  $ id      : int  2 3 4 5 6 7 8 9 10 11 ...
#>  $ nearc2  : int  0 0 0 1 1 1 1 1 1 1 ...
#>  $ nearc4  : int  0 0 0 1 1 1 1 1 1 1 ...
#>  $ educ    : int  7 12 12 11 12 12 18 14 12 12 ...
#>  $ age     : int  29 27 34 27 34 26 33 29 28 29 ...
#>  $ fatheduc: int  NA 8 14 11 8 9 14 14 12 12 ...
#>  $ motheduc: int  NA 8 12 12 7 12 14 14 12 12 ...
#>  $ weight  : num  158413 380166 367470 380166 367470 ...
#>  $ momdad14: int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ sinmom14: int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ step14  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg661  : int  1 1 1 0 0 0 0 0 0 0 ...
#>  $ reg662  : int  0 0 0 1 1 1 1 1 1 1 ...
#>  $ reg663  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg664  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg665  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg666  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg667  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg668  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ reg669  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ south66 : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ black   : int  1 0 0 0 0 0 0 0 0 0 ...
#>  $ smsa    : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ south   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ smsa66  : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ wage    : int  548 481 721 250 729 500 565 608 425 515 ...
#>  $ enroll  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ KWW     : int  15 35 42 25 34 38 41 46 32 34 ...
#>  $ IQ      : int  NA 93 103 88 108 85 119 108 96 97 ...
#>  $ married : int  1 1 1 1 1 1 1 1 4 1 ...
#>  $ libcrd14: int  0 1 1 1 0 1 1 1 0 1 ...
#>  $ exper   : int  16 9 16 10 16 8 9 9 10 11 ...
#>  $ lwage   : num  6.31 6.18 6.58 5.52 6.59 ...
#>  $ expersq : int  256 81 256 100 256 64 81 81 100 121 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"