Wooldridge Source: Hamermesh, D.S. and J.E. Biddle (1994), “Beauty and the Labor Market,” American Economic Review 84, 1174-1194. Professor Hamermesh kindly provided me with the data. For manageability, I have included only a subset of the variables, which results in somewhat larger sample sizes than reported for the regressions in the Hamermesh and Biddle paper. Data loads lazily.

data('beauty')

Format

A data.frame with 1260 observations on 17 variables:

  • wage: hourly wage

  • lwage: log(wage)

  • belavg: =1 if looks <= 2

  • abvavg: =1 if looks >=4

  • exper: years of workforce experience

  • looks: from 1 to 5

  • union: =1 if union member

  • goodhlth: =1 if good health

  • black: =1 if black

  • female: =1 if female

  • married: =1 if married

  • south: =1 if live in south

  • bigcity: =1 if live in big city

  • smllcity: =1 if live in small city

  • service: =1 if service industry

  • expersq: exper^2

  • educ: years of schooling

Source

https://www.cengage.com/cgi-wadsworth/course_products_wp.pl?fid=M20b&product_isbn_issn=9781111531041

Used in Text

pages 238-239, 265-266

Examples

str(beauty)
#> 'data.frame': 1260 obs. of 17 variables: #> $ wage : num 5.73 4.28 7.96 11.57 11.42 ... #> $ lwage : num 1.75 1.45 2.07 2.45 2.44 ... #> $ belavg : int 0 0 0 0 0 0 0 0 0 0 ... #> $ abvavg : int 1 0 1 0 0 0 0 1 0 0 ... #> $ exper : int 30 28 35 38 27 20 12 5 5 12 ... #> $ looks : int 4 3 4 3 3 3 3 4 3 3 ... #> $ union : int 0 0 0 0 0 0 0 1 0 0 ... #> $ goodhlth: int 1 1 1 1 1 0 1 1 1 1 ... #> $ black : int 0 0 0 0 0 0 0 0 0 0 ... #> $ female : int 1 1 1 0 0 1 0 0 1 1 ... #> $ married : int 1 1 0 1 1 1 1 0 0 0 ... #> $ south : int 0 1 0 0 0 0 0 0 0 0 ... #> $ bigcity : int 0 0 0 1 0 1 1 0 0 0 ... #> $ smllcity: int 1 1 1 0 1 0 0 1 0 1 ... #> $ service : int 1 0 0 1 0 0 0 0 0 0 ... #> $ expersq : int 900 784 1225 1444 729 400 144 25 25 144 ... #> $ educ : int 14 12 10 16 16 12 16 16 16 12 ... #> - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"