Wooldridge Source: Hamermesh, D.S. and J.E. Biddle (1994), “Beauty and the Labor Market,” American Economic Review 84, 1174-1194. Professor Hamermesh kindly provided me with the data. For manageability, I have included only a subset of the variables, which results in somewhat larger sample sizes than reported for the regressions in the Hamermesh and Biddle paper. Data loads lazily.

data('beauty')

Format

A data.frame with 1260 observations on 17 variables:

  • wage: hourly wage

  • lwage: log(wage)

  • belavg: =1 if looks <= 2

  • abvavg: =1 if looks >=4

  • exper: years of workforce experience

  • looks: from 1 to 5

  • union: =1 if union member

  • goodhlth: =1 if good health

  • black: =1 if black

  • female: =1 if female

  • married: =1 if married

  • south: =1 if live in south

  • bigcity: =1 if live in big city

  • smllcity: =1 if live in small city

  • service: =1 if service industry

  • expersq: exper^2

  • educ: years of schooling

Used in Text

pages 238-239, 265-266

Examples

 str(beauty)
#> 'data.frame':	1260 obs. of  17 variables:
#>  $ wage    : num  5.73 4.28 7.96 11.57 11.42 ...
#>  $ lwage   : num  1.75 1.45 2.07 2.45 2.44 ...
#>  $ belavg  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ abvavg  : int  1 0 1 0 0 0 0 1 0 0 ...
#>  $ exper   : int  30 28 35 38 27 20 12 5 5 12 ...
#>  $ looks   : int  4 3 4 3 3 3 3 4 3 3 ...
#>  $ union   : int  0 0 0 0 0 0 0 1 0 0 ...
#>  $ goodhlth: int  1 1 1 1 1 0 1 1 1 1 ...
#>  $ black   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ female  : int  1 1 1 0 0 1 0 0 1 1 ...
#>  $ married : int  1 1 0 1 1 1 1 0 0 0 ...
#>  $ south   : int  0 1 0 0 0 0 0 0 0 0 ...
#>  $ bigcity : int  0 0 0 1 0 1 1 0 0 0 ...
#>  $ smllcity: int  1 1 1 0 1 0 0 1 0 1 ...
#>  $ service : int  1 0 0 1 0 0 0 0 0 0 ...
#>  $ expersq : int  900 784 1225 1444 729 400 144 25 25 144 ...
#>  $ educ    : int  14 12 10 16 16 12 16 16 16 12 ...
#>  - attr(*, "time.stamp")= chr "25 Jun 2011 23:03"