Wooldridge Source: Terza, J.V. (2002), “Alcohol Abuse and Employment: A Second Look,” Journal of Applied Econometrics 17, 393-404. I obtained these data from the Journal of Applied Econometrics data archive at http://qed.econ.queensu.ca/jae/. Data loads lazily.

data('alcohol')

Format

A data.frame with 9822 observations on 33 variables:

  • abuse: =1 if abuse alcohol

  • status: out of workforce = 1; unemployed = 2, employed = 3

  • unemrate: state unemployment rate

  • age: age in years

  • educ: years of schooling

  • married: =1 if married

  • famsize: family size

  • white: =1 if white

  • exhealth: =1 if in excellent health

  • vghealth: =1 if in very good health

  • goodhealth: =1 if in good health

  • fairhealth: =1 if in fair health

  • northeast: =1 if live in northeast

  • midwest: =1 if live in midwest

  • south: =1 if live in south

  • centcity: =1 if live in central city of MSA

  • outercity: =1 if in outer city of MSA

  • qrt1: =1 if interviewed in first quarter

  • qrt2: =1 if interviewed in second quarter

  • qrt3: =1 if interviewed in third quarter

  • beertax: state excise tax, $ per gallon

  • cigtax: state cigarette tax, cents per pack

  • ethanol: state per-capita ethanol consumption

  • mothalc: =1 if mother an alcoholic

  • fathalc: =1 if father an alcoholic

  • livealc: =1 if lived with alcoholic

  • inwf: =1 if status > 1

  • employ: =1 if employed

  • agesq: age^2

  • beertaxsq: beertax^2

  • cigtaxsq: cigtax^2

  • ethanolsq: ethanol^2

  • educsq: educ^2

Used in Text

page 629

Examples

 str(alcohol)
#> 'data.frame':	9822 obs. of  33 variables:
#>  $ abuse     : int  1 0 0 0 0 0 0 0 0 0 ...
#>  $ status    : int  1 3 3 3 3 3 3 1 1 3 ...
#>  $ unemrate  : num  4 4 4 3.3 3.3 ...
#>  $ age       : int  50 37 53 59 43 38 34 45 47 31 ...
#>  $ educ      : int  4 12 9 11 10 10 10 2 5 12 ...
#>  $ married   : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ famsize   : int  1 5 3 1 1 1 4 2 2 1 ...
#>  $ white     : int  1 1 1 1 1 1 1 1 0 1 ...
#>  $ exhealth  : int  0 0 1 1 1 1 0 0 0 1 ...
#>  $ vghealth  : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ goodhealth: int  0 1 0 0 0 0 1 0 0 0 ...
#>  $ fairhealth: int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ northeast : int  0 0 0 1 1 1 0 0 0 0 ...
#>  $ midwest   : int  1 1 1 0 0 0 1 1 1 1 ...
#>  $ south     : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ centcity  : int  0 0 0 1 1 1 0 0 0 1 ...
#>  $ outercity : int  0 0 0 0 0 0 1 1 1 0 ...
#>  $ qrt1      : int  1 1 1 1 1 1 1 1 1 1 ...
#>  $ qrt2      : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ qrt3      : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ beertax   : num  0.334 0.334 0.334 0.24 0.24 ...
#>  $ cigtax    : num  38 38 38 26 26 26 20 20 20 20 ...
#>  $ ethanol   : num  2.04 2.04 2.04 2.45 2.45 ...
#>  $ mothalc   : int  0 0 0 0 0 0 0 0 0 0 ...
#>  $ fathalc   : int  0 0 0 0 1 0 1 0 1 0 ...
#>  $ livealc   : int  0 0 0 0 1 0 1 0 1 0 ...
#>  $ inwf      : int  0 1 1 1 1 1 1 0 0 1 ...
#>  $ employ    : int  0 1 1 1 1 1 1 0 0 1 ...
#>  $ agesq     : int  2500 1369 2809 3481 1849 1444 1156 2025 2209 961 ...
#>  $ beertaxsq : num  0.1116 0.1116 0.1116 0.0576 0.0576 ...
#>  $ cigtaxsq  : num  1444 1444 1444 676 676 ...
#>  $ ethanolsq : num  4.16 4.16 4.16 6 6 ...
#>  $ educsq    : int  16 144 81 121 100 100 100 4 25 144 ...
#>  - attr(*, "time.stamp")= chr "22 Jan 2013 14:09"