Download the file 7.R.RData
and load it into R using the load
function.
data_address <- "https://lagunita.stanford.edu/c4x/HumanitiesSciences/StatLearning/asset/7.R.RData"
download.file(data_address, paste0(getwd(), "/R"))
Load the data from the file 7.R.RData
, and plot it using plot(x,y)
. What is the slope coefficient in a linear regression of y on x (to within 10%)?
load(path.expand("~/R/StatisticalLearning/data/7R.RData"))
plot(x,y)
model_71 <- lm(y ~ x)
summary(model_71)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.71289 -0.26943 -0.02448 0.21068 0.83582
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 95.43627 7.14200 13.36 <2e-16 ***
## x -0.67483 0.05073 -13.30 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3376 on 98 degrees of freedom
## Multiple R-squared: 0.6436, Adjusted R-squared: 0.64
## F-statistic: 177 on 1 and 98 DF, p-value: < 2.2e-16
For the model \(y\) ~ \(1 + x + x^2\), what is the coefficient of x (to within 10%)?
model_72 <- lm(y ~ I(x) + I(x^2))
summary(model_72)
##
## Call:
## lm(formula = y ~ I(x) + I(x^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.65698 -0.18190 -0.01938 0.16355 0.86149
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.421e+03 1.547e+03 -3.505 0.000692 ***
## I(x) 7.771e+01 2.197e+01 3.536 0.000624 ***
## I(x^2) -2.784e-01 7.805e-02 -3.567 0.000563 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3191 on 97 degrees of freedom
## Multiple R-squared: 0.6849, Adjusted R-squared: 0.6784
## F-statistic: 105.4 on 2 and 97 DF, p-value: < 2.2e-16